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Abstract

We present a simple heuristic clustering procedure, with running time independent
of the data size, that combines random sampling with Single-Linkage (Kruskal’s
algorithm), and show that with sufficient probability, it has a constant approxi-
mation guarantee with respect to the optimal k-means cost, provided an optimal
solution satisfies a center-separability assumption. As the separation increases, it
has better performance: fix any ε, δ > 0, if the center separation is sufficiently
large, it has a (1 + ε)-approximation guarantee with probability at least 1− δ.

1 Introduction

While there is a rich body of literature on approximation algorithms for the k-means clustering
problem [16, 10, 12, 8], less work has focused on proving guarantees for practically used schemes,
e.g., Lloyd’s algorithm [15] and linkage-based algorithms [7]. Ostrovsky et al. [17] first showed that
when seeded with k-means++ [1], a Lloyd-like algorithm efficiently finds a (1 + ε)-approximation
to the k-means objective (i.e., a Polynomial Time Approximation Scheme, PTAS) with high prob-
ability on well-clusterable instances. With a weaker clusterability assumption, Kumar and Kannan
[11] showed that the k-SVD + constant k-means approximation + Lloyd’s update scheme is a PTAS
for the k-means clustering problem. Subsequent analysis [4] proposed a center-separability assump-
tion as a simplification of [11], under which they showed that after projecting data to the subspace
obtained by k-SVD, any constant k-means approximation is a PTAS, provided the center separation
is sufficiently large (Sec. 3, [4]). A drawback of [11, 4] is that the required k-SVD step limits the
applicability of their clustering scheme to d > k. The performance of linkage-based algorithms
for center-based clustering, including k-means, on well-clusterable data were investigated by [3, 5],
where the linkage algorithms are used to find a hierarchical clustering and some smart pruning is
needed for finding the final k-clustering.

We show that a simple heuristic, one that combines random sampling with Single-Linkage (the latter
terminates when k-components are left, eliminating the need for pruning), is a PTAS for the k-means
problem with high probability when the underlying data satisfies a clusterability assumption that is
comparable to those in [17, 11, 4, 2]. Yet, its running time is independent of the data size while, to
our knowledge, this is not the case for most algorithms with such strong approximation guarantees.
We thus demonstrate a positive case of computational gain by exploiting the structure of easy data.

1.1 Preliminaries

The input of our clustering problem is a discrete dataset X , an n by d matrix with each row a data
point x ∈ X . We assume X admits one (or more) non-degenerate1 optimal k-means clustering

1We say a k-clustering is degenerate if any of its k clusters are empty.
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T∗ = {Ts, s ∈ [k]}, which in addition satisfies d∗rs(f)-weak center separability, defined below. Let
ns := |Ts|,∀s ∈ [k], and let nmin := mins∈[k] ns and nmax := maxs∈[k] ns.

Mappings Fix a point set Y , we let m(Y ) denote the mean of Y . In general, each clustering
assignment A := {As, s ∈ [k]} induces a unique set of centroids C = {m(As), s ∈ [k]}. For a
ground-truth T∗, we denote the induced centroids by µs := m(Ts),∀s ∈ [k]. Alternatively, fix a
set of k centroids C, we let C(·) denote a mapping C(x) := arg mincr∈C ‖x− cr‖. This mapping
induces a k-clustering X , i.e., a Voronoi partition of X . We let V (cr) denote the Voronoi region
{x ∈ Rd, ‖x− cr‖ < ‖x− cs‖,∀s 6= r}.

K-means cost For any subset of points Y , with respect to an arbitrary set of k centroids C, we
denote its k-means cost by φ(C, Y ) :=

∑
y∈Y ‖y − C(y)‖2. For a k-clustering A = {Ar} of

X , we denote its k-means cost with respect to an arbitrary set of k centroids C by φ(C,A) :=∑k
r=1 φ(C,Ar) (or simply φ(A) when cr = m(Ar),∀cr ∈ C, r ∈ [k]). We let φr∗ := φ({µr}, Tr),

and let φ∗ :=
∑k
r=1 φ

r
∗ denote the optimal k-means cost.

Characterization of (X,T∗) Three properties of (X,T∗) are useful to our analysis. We use
pmin := minr∈[k]

nr
n to characterize the fraction of the smallest cluster in T∗ to the entire dataset.

We use α := minr 6=s
nr
ns

to characterize the level of cluster balance in T∗ (0 < α ≤ 1 always holds;

α = 1 when the ground-truth is perfectly balanced). We let wr :=
(φr∗/nr)

maxx∈Tr ‖x−µr‖2
characterize the

ratio between average and maximal “spread” of cluster Tr, and we let wmin := minr∈[k] wr. Note
pmin ≤ 1

k , so it should not be treated as a constant as k increases; α and wmin, on the other hand, do
not necessarily grow with k (nor n, d), and we treat them as constants.

Our clusterability assumption We present two assumptions. The second is stronger (but within
a factor of

√
k) than the first.

Definition 1 (d∗rs(f)-weak center separability). A dataset-solution pair (X,T∗) satisfies d∗rs(f)-
weak center separability if ∀r ∈ [k], s 6= r, ‖µr − µs‖ ≥ d∗rs, where d∗rs = f(

√
φ1 + φ2)( 1√

nr
+

1√
ns

), where φ1 and φ2 are the k-means cost of the largest and second largest (w.r.t. k-means cost)
clusters in an optimal k-means solution, i.e., φ1 := maxr φ

r
∗, φ2 := maxs,s 6=1 φ

s
∗.

This clusterability assumption is reminiscent of the mean separation assumption in the earlier work
on learning mixtures of Gaussians [9], where the means of different components are required to be
at least Ω(σmax) apart, with σmax being the largest deviation of a single component. Since most of
the mass of a Gaussian component is within one standard deviation of their mean, σmax provides a
rough bound of “cluster width” of each component. Thus, mean separation implies that the within-
cluster distance is on average smaller than the between-cluster distance. Here, we do not have any
probabilistic assumptions, however, µr, µs are the empirical mean of their respective clusters. Also

note that
√

φr∗
nr

is the empirical deviation for cluster Tr. However, instead of requiring the centers

to be at least Ω(
√

φ1

n1
) apart, we need a more strict condition Ω(

√
φ1

nr
),∀r, due to the technical

difficulties that arise by not having measure concentration. When analyzing the performance of
Algorithm 1 together with Lloyd’s algorithm [15], we need a stronger assumption as below, which
depends on the global k-means cost.

Definition 2 ((d∗rs(f)-center separability). A dataset-solution pair (X,T∗) satisfies d∗rs(f)-center
separability if we redefine d∗rs(f) above as d∗rs(f) := f

√
φ∗(

1√
nr

+ 1√
ns

).

Although stronger than weak center separability, (d∗rs(f)-center separability is implied by the as-
sumption in [17]. Furthermore, in the case d < k and f = O(

√
k), it is implied by the assumption

in [11]; when f = O(1), it is similar to the assumption in [4].

2 Main results

In large-scale applications, such as computer vision, clustering algorithms are often run on a random
sample of the entire data (i.e., a subset of data sampled uniformly at random) [6, 13, 14]. Our
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Algorithm 1 Heuristic clustering
Input: X,m, k
Output: {S1, . . . , Sk}

1: {νi, i ∈ [m]} ← sample m points from X (i.i.d.) uniformly at random with replacement
2: {S̃1, . . . , S̃k} ←run Single-Linkage on {νi, i ∈ [m]} until there are only k connected compo-

nents left
3: C0 = {ν∗r , r ∈ [k]} ← take the mean of the points in each connected component S̃r, r ∈ [k]
4: X = S1 ∪ · · · ∪ Sk ← k-partition X according to the Voronoi region induced by C0

main results provide an example where such an heuristic, as described in Algorithm 1, has provable
guarantee. In the context of k-means clustering, this leads us to the conclusion that Algorithm 1
is a constant approximation k-means algorithm with high probability, whose performance can be
further improved by Lloyd’s algorithm. It also suggests that if the dataset has a clusterable structure,
the sample size could be independent of the data size, a desirable property for dealing with massive
datasets.

Theorem 1. Assume T∗ is an optimal k-means solution with respect to X , which satisfies d∗rs(f)-
weak center separability with f > max{ 1α , 16}. If we clusterX using Algorithm 1, then with proba-
bility at least 1−m exp(−2( f4−1)2w2

min)−k exp(−mpmin), the final solution is a 4-approximation
to the k-means objective.

The proof, similar to Theorem 3.2 of [4], follows directly from Theorem 3 and Lemma 1.

Proof. Consider each cluster Sr in the final solution. Its k-means cost, by definition, is
φ({m(Sr)}, Sr) ≤ φ({µr}, Sr) = φ({µr}, Sr ∩ Tr) + φ({µr},∪s6=rSr ∩ Ts). By Theorem
3 and our assumption on center separation, γ ≤

√
f

2f < 1
4 , we can apply Lemma 1 to get

φ({µr},∪s 6=rSr ∩ Ts) =
∑
s6=r

∑
x∈Sr∩Ts ‖x − µr‖2 ≤

∑
s6=r

∑
x∈Sr∩Ts

1
(1−4γ)2 ‖x − µs‖2,

by Lemma 1. Since f > 16, we get 1
(1−4γ)2 ≤ 4. Summing over all r ∈ [k], φ({Sr, r ∈ [k]}) ≤∑

r φ({µr}, Sr ∩ Tr) +
∑
r

1
(1−4γ)2

∑
s 6=r

∑
x∈Sr∩Ts ‖x − µs‖2 ≤ 4(

∑
r φ({µr}, Sr ∩ Tr) +∑

r

∑
s 6=r

∑
x∈Sr∩Ts ‖x−µs‖

2) = 4{
∑
r(
∑
x∈Sr∩Tr ‖x−µr‖

2+
∑
s6=r

∑
x∈Sr∩Ts ‖x−µs‖

2)} =

4{
∑
r

∑
x∈Sr ‖x− C∗(x)‖2} = 4φ∗ (C∗ is the set of optimal centroids).

Intuitively, we want neither under-sampling, which may fail to cover some optimal clusters, nor
over-sampling, which may include outliers. The intuition translates into the success probability of
Algorithm 1: m should be carefully chosen to be neither too large nor too small.

In Theorem 1 we have fixed f,m as constants to get a constant approximation guarantee with proba-
bility depending on f,m. If we instead fix any approximation factor 1+ε > 1, and failure probability
δ > 0, then by allowing f,m to depend on these two parameters, we can achieve 1+ε-approximation
guarantee with probability at least 1− δ, as shown in the corollary below.

Corollary 1. Assume the conditions in Theorem 1 hold. For any δ > 0, ε > 0, if f =

Ω(
√

log(
1
δ log kδ
pmin

) + 1
ε2 ), and choosing log 2k

δ

pmin
< m < δ

2 exp{2( f4 − 1)2w2
min}, then Algorithm 1

has (1 + ε)-approximation guarantee with respect to the optimal k-means objective with probability
at least 1− δ.

Therefore, it suffices to have m = Ω(
log kδ
pmin

) (this is at least Ω(k log k
δ )). Since the algorithm is

only run on a sample of size m, as long as pmin = Ω(exp(−k)), the runtime of Algorithm 1 has
polynomial dependence on k. The quadratic dependence of our assumption on 1

ε can be relaxed to
1√
ε
, if we run Lloyd’s algorithm to refine the clustering and use d∗rs(f)-center separability instead.

Theorem 2. Assume T∗ is an optimal k-means solution with respect to X , which satisfies d∗rs(f)-

center separability. And for any δ > 0, ε > 0, if f = Ω(
√

log(
1
δ log 1

δ

pmin
) +

√
1
ε ), and choosing

log 2k
δ

pmin
< m < δ

2 exp{2( f4 − 1)2w2
min}, then if we run Lloyd’s algorithm with seeds {ν∗r , r ∈ [k]}
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obtained from Algorithm 1, the converged Lloyd’s solution has a (1 + ε)-approximation guarantee
with respect to the optimal k-means objective with probability at least 1− δ.

Due to space limits we removed some proofs2.

2.1 Analysis

Lemma 1 shows when the centroids in C0 is sufficiently close to those in an optimal solution (guar-
anteed by Theorem 3), the mis-clustered points of each cluster Sr must be “outliers” with respect
to its optimal cluster Ts, for some s 6= r. Consequently, assigning them to Tr does not increase the
cost too much.

Lemma 1. If γ := maxr,s 6=r
‖ν∗s−µs‖
‖µr−µs‖ <

1
4 , then ∀r ∈ [k],∀x ∈ V (ν∗r ), ‖x−µr‖ ≤ 1

1−4γ ‖x−µs‖

Our main result regarding Algorithm 1 is presented below.

Theorem 3. Assume T∗ is an optimal k-means solution with respect to X , which satisfies d∗rs(f)-
weak center separability with f > max{ 1α , 4}. If we cluster X using Algorithm 1, then ∀µr,∃ν∗r s.t.

‖µr − ν∗r ‖ ≤
√
f
2

√
φr∗
nr

with probability at least 1−m exp(−2( f4 − 1)2w2
min)− k exp(−mpmin).

Proof outline To prove the theorem, we first show that Single-Linkage as used in Algorithm 1 has
the property of correctly identifying k connected components of a graphG, provided for all edges of
G, all intra-cluster edges are shorter than any inter-cluster edges (Lemma 2). Then we show that the
edge set E induced by sample {νi} satisfies the condition with significant probability, where each
connected component {νr(j)} corresponds to samples from the optimal cluster Tr (Lemma 3 and 4).
Finally, taking the mean of points in each connected component gives the desired result.

Consider a complete graph G = (V,E). Any k-clustering {V1, . . . , Vk} of the vertex set induces a
bi-partition of the edge set E = Ein ∪ Eout s.t. e = (vi, vj) ∈ Ein if vi, vj ∈ Vr for some r ∈ [k],
and e = (vi, vj) ∈ Eout if vi ∈ Vr, vj ∈ Vs, r 6= s. Let w(e) := ‖vi − vj‖, the correctness of
Single-Linkage on instances described above is formally stated below.

Lemma 2. Assume a complete graph G = (V,E) admits a k-clustering {V ∗1 , . . . , V ∗k } of V with
the induced edge bi-partition E∗in, E

∗
out such that ∀e1 ∈ E∗in,∀e2 ∈ E∗out, we have w(e1) < w(e2)

(the edge weights are just the Euclidean distances between vertices). Then running Single-Linkage
on G0 := (V, ∅) until k-components left, results in a graph GSL such that for each connected
component, r, of GSL the vertex set, V rSL, corresponds to exactly one cluster V ∗r of V .

Now we show that with significant probability, the ground-truth clustering induces a non-degenerate
k-clustering of {νi, i ∈ [m]}, {{νi} ∩ Tr, r ∈ [k]}, which satisfies the property required by Lemma
2, which follows by combining Lemma 3 and 4.

Lemma 3. Let Tπ(i) denote the optimal cluster a sample νi belongs to. Define two events: A :=

{∀νi, i ∈ [m], ‖νi − µπ(i)‖ ≤
√
f
2

√
φ
π(i)
∗
nπ(i)
}, and B := {∀Tr, r ∈ [k], Tr ∩ {νi, i ∈ [m]} 6= ∅}. Then

Pr(A ∩B) ≥ 1−m exp(−2( f4 − 1)2w2
min)− k exp(−mpmin).

Lemma 4. If ∀νi ∈ {νi, i ∈ [m]}, ‖νi − µπ(i)‖2 ≤ f
4
φπ(i)
∗
nπ(i)

and f > max{ 1α , 4}. Then for any
i, j ∈ [m] s.t. π(i) = π(j), and for any p, q ∈ [m] s.t. π(p) 6= π(q), ‖νi − νj‖ < ‖νp − νq‖.

Finally, combining the seeding guarantee from Lemma 3 and 4 with the property of Single-Linkage
in Lemma 2 completes the proof of Theorem 3.
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